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Abstract

This manual documents version 1.5 of the ANOPP2 Artificial Neural Network Tool (AANNT)
developed at the NASA Langley Research Center Aeroacoustics Branch. The AANNT is a suite
of standalone software that provide the capabilities of generating optimal artificial neural network
prediction models, deploying these prediction models over arbitrary, user-defined data, and con-
ducting sensitivity analyses over these prediction models. The AANNT has been developed for user
simplicity and requires only prerequisite Python package installation and user-defined namelist files
for execution.

This application programming interface (API) is part of a larger toolkit called the Aircraft NOise
Prediction Program 2 (ANOPP2). The goal of ANOPP2 is to provide the ability to independently:
(1) assess aircraft system noise; (2) assess aircraft component noise; and (3) evaluate aircraft
noise reduction technologies and flight procedures. Additionally, ANOPP2 is designed to provide
a capability for understanding the fundamental physics involved in noise generation to support
experiments and flight demonstration activities.

As a component of ANOPP2, the AANNT and this document may be included as part of the
ANOPP2 distribution, or they may be provided independently of that distribution.
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1 Overview

This reference manual will discuss the ANOPP2 Artificial Neural Network Tool (AANNT), general
Machine Learning (ML) methodology, and how Artificial Neural Networks (ANN) can be used for
regression modeling of nonlinear input-output functional relationships. Generally speaking, there
are a multitude of different ANN model architectures and hyperparameters that can be used to
generate accurate prediction models. These elements of the ANN modeling procedure are typically
determined heuristically and are problem specific; varying with the input-output relationship being
modeled. In other words, the optimal ANN structure used for one problem may be different from
the ANN structure of another. Because of these potential ANN model form variations as well as the
common difficulties associated with creating ANNs, a user-friendly suite of tools has been developed
by the author and implemented within the NASA second generation Aircraft NOise Prediction
Program (ANOPP2) software. The AANNT consists of three main components: Artificial Neural
Network Prediction Modeling (ANNPM), Artificial Neural Network Model Deployment (ANNMD),
and Artificial Neural Network Sensitivity Analyses (ANNSA), respectively. Example inputs and
outputs of the three AANNT components will be provided in this reference manual.

1.1 Prerequisites

To use the AANNT, the user must first supply data describing the relationship being modeled.
The format of these data will be discussed in this reference manual, but, in general, these user-
supplied data must contain discrete combinatorial data points of the functional inputs and the
correspondent outputs, or labeled data. For example, a user may wish to model the relationship
between the induced power, PI , being generated by a rotor relative to various inputs such as the
number of rotor blades, Nb, rotor rotation rate, Ω, rotor radius, R, and collective pitch angle, θ0,
similar to what was done by Thurman et al. [2]. The user would first specify the extents of the
input feature space or minimum and maximum values of the input features. An example of this is
shown in Table 1 where Nb is a discrete (i.e., categorical) input feature and all other input features
are continuous between an upper and lower limit.

Table 1: Input feature space. (* indicates categorical input features. All other features are contin-
uous.)

Input Feature Range
Number of rotor blades (Nb)* 2, 3, 4
Rotor speed (Ω) 3500 RPM – 6000 RPM
Rotor radius (R) 6 in – 8 in
Target design thrust (Tdesign) 1.5 lb – 3.0 lb
Airfoil camber (M) 0% – 9%
Location of maximum airfoil camber (G) 20% – 50%
Airfoil thickness (t/c) 6% – 15%
Collective pitch (θ0) −5◦ – +5◦

The user would then generate a design space consisting of combinations of input feature values
within the input feature space. An example design space taken from Thurman [1] is shown in Fig.
1 to illustrate an arbitrary design space projected on a 2-D subdimension of the input feature space.
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Figure 1: Input data design space projected on a 2-D input feature space. Adapted from Thurman
[1].

After the design space development, the user must provide labeled data at each point in the
input feature space by experimental or computational methods. For example, the user would run
simulations at each discrete data point to predict values of PI correspondent to each of the input
data points. A flowchart illustrating the prerequisites for using AANNT as well as the hierarchy of
AANNT components is shown in Fig. 2. The generation of the input feature space and methods for
developing the output data for model development are outside the scope of this reference manual,
however, the reader is referred to Thurman et al. [2] and Thurman [1] for detailed discussion.

2 Machine Learning

In general, ML involves the development of functional relationships, or prediction models, using
prescribed input data points (xk,xk+1, ...,xs; where s corresponds to the number of input features).
The ML prediction model is ‘trained’ using algorithmic optimization (e.g., stochastic gradient
descent) until it adequately ‘learns’ the underlying relationship. The main goal of any ML procedure
is not only to fit the input data points, but to develop prediction models that can generalize to new
data, previously unseen by the models, to make accurate predictions anywhere within the prescribed
region of experimentation, or input feature space. There are two main types of learning associated
with ML: unsupervised learning (i.e., descriptive) and supervised learning (i.e., predictive).

Unsupervised learning entails the development of prediction models where there are no labeled
data; in other words, only the prescribed input data points are provided. Since no labeled data
are provided during the training procedure, the ML task is to learn patterns, or similarities, in
the input data. A common type of unsupervised learning is data clustering, where the prediction
model ‘clusters’ the input data points based upon some learned similarity between the input data [4].
For example, provided the demographic information of shareholders in a particular company, the
trained model may predict that people of a certain age group or income status are more likely to
hold shares of the company. An example of this unsupervised learning problem is shown in Fig. 3

9



Determine input-output
relationship to model

(i.e., PI = f(Nb,Ω,R, ...,θ0)

Create input feature space

Acquire experimental/computational data
for each point in the input feature space

Prerequisite to AANNT

Supply data to AANNT
(i.e., Nbi

,Ωi,Ri, ...,θ0i ; PIi

Nbi+1 ,Ωi+1,Ri+1, ...,θ0i+1 ; PIi+1
...

Nbn ,Ωn,Rn, ...,θ0n ; PIn)

Create ANN prediction models using ANNPM

Deploy ANN models using ANNMD

Conduct sensitivity analyses using ANNPM

Functionality of AANNT

Figure 2: Illustration of the AANNT component hierarchy and the AANNT prerequisites.

where the prediction model has clustered shareholders to a particular demographic group.

Supervised learning, on the other hand, involves the use of labeled data. Since this form of learning
uses labeled data, the overall goal is for prediction models to learn the mapping between input
data, (xk,xk+1, ...,xs), and labeled data, yj , rather than learning a descriptive similarity between
the input data points. Using the same input data of demographic information as the previous
example, the labeled data, y1, may hold a binary form of classification describing shareholder
status (e.g., y1 = 0 for nonshareholder status and y1 = 1 for shareholder status). Contrary to the
previous task of clustering demographic information of shareholders, the supervised learning task
is to learn a relationship between the demographic information and shareholder status; that is,
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Figure 3: Illustration of an unsupervised clustering problem where shareholder status is determined
by age and yearly income.

given (xk,xk+1, ...,xs), the model will predict whether a particular individual is a shareholder. The
general form of this supervised learning classification problem is:

f(xk,xk+1, ...,xs) = ŷ1, (1)

where ŷ1 is the predicted value of y1. An example of this supervised classification problem is shown
in Fig. 4 where the age and income are provided to the ML model, which then uses these inputs to
predict shareholder status.

x1 = Age

x2 = Income

Machine Learning
Prediction Model

ŷ1 = 1
(Shareholder)

ŷ1 = 0
(Nonshareholder)

Figure 4: Illustration of a supervised classification problem where shareholder status is predicted
by the model using inputted demographic information.

Other forms of this binary classification task may entail the use of multiple labeled data for each
input. For example, a shape classification problem may use: x1 = number of sides and x2 =
angle between sides, where the classification model will have three labeled outputs for circular
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(ŷ1 = 1 for circular or ŷ1 = 0 for noncircular), rectangular (ŷ2 = 1 for rectangular or ŷ2 = 0 for
nonrectangular), and triangular (ŷ3 = 1 for triangular or ŷ3 = 0 for nontriangular). Based upon the
predicted outputs, the model will determine what the shape of the object is (e.g., ŷ1 = 0, ŷ2 = 1,
and ŷ3 = 0 for rectangular). An example of this supervised multiclass classification problem is
shown in Fig. 5 where the number of sides and angle between sides are provided to the ML model,
which then uses these inputs to predict the shape.

x1 = Number of sides

x2 = Angle between sides

Machine Learning
Prediction Model

ŷ2 = rectangular

ŷ1 = circular

ŷ3 = triangular

Figure 5: Illustration of a supervised multiclass classification problem where shape is predicted by
the model using number of sides and angle between sides.

In addition to the supervised learning classification problem, the other type of supervised learning
is regression. Regression also involves the use of labeled data; however, rather than the output
consisting of single or multiple categories, the output data for regression are almost exclusively
continuous, meaning that the regression problem is one of interpolation [5]. There are many model
architectures associated with regression, such as polynomial regression models, Gaussian models
(e.g., Kriging [6,7]), Bayesian interpolation [8,9], and of particular importance to this documenta-
tion, ANNs [10]. A generic example of a supervised regression problem is shown in Fig. 6 where
the inputs, (xk,xk+1, ...,xs) are provided to the ML model, which predicts a continuous output, ŷ1.

xk

xk+1

...

xs

Machine Learning
Prediction Model f1(xk,xk+1, ...,xs) = ŷ1

Figure 6: Illustration of a supervised regression problem where a continuous output is predicted by
the ML model.
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2.1 Artificial Neural Networks for Regression

2.1.1 General Model Form

ANNs were selected as the ML prediction model architecture for this software based upon their
successful implementation by Thurman and Somero [11,12] and their proven application to aeroa-
coustic problems [1, 2, 13, 14]. The ANN aims to replicate the architecture of the neurons in the
human brain, set up in ‘hidden’ layers as shown in Fig. 7. Each hidden layer consists of a num-
ber of activation functions, or neurons, aligned in parallel. All neurons in a particular layer are
activated in unison, with different multiplicative weights along the connections between neurons,
inputs, and outputs. In general, if an ANN has more than one hidden layer, it is considered a
multilayer perceptron (MLP); otherwise, it is a single-layer perceptron (SLP).

Figure 7: Illustration of a MLP. Adapted from Thurman et al. [2].

In the case of the two-layer MLP shown in Fig. 7, the general equations defining the ANN are:

z1h = γ1

(
s∑

k=1
ωhkxk +ωh0

)
, (2)

z2p = γ2

(
H∑

h=1
ωphz1h +ωp0

)
, (3)

fj(xk,xk+1, ...,xs) =
P∑

p=1
µpz2p +µ0 = ŷj , (4)

where H is the number of neurons in the first hidden layer, and P is the number of neurons in
the second hidden layer. In Eqs. 2, 3, and 4, γ is the activation function used by the neurons in
a hidden or output layer, z is the output from a neuron in a hidden layer, ωhk are the weights
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between the input features and the first hidden layer, ωph are the weights between the first and
second hidden layers, µp are the weights between the second hidden layer and the output, ω0 and
µ0 are commonly used bias terms (i.e., intercepts) added to each hidden layer, and fj is the jth

ANN model producing the predicted value, ŷj .

The activation functions, γ, can be thought of as functional ‘mappings’ of a neuron’s input onto
highly nonlinear hyperplanes defined by the structure of γ. These activation functions are nec-
essary to introduce nonlinearity to the ANN, enabling it to effectively model complex, nonlinear
input-output relationships. Commonly used activation functions for regression applications are the
hyperbolic tangent (tanh), defined by Eq. 5 and shown in Fig. 8a, and continuously differentiable
variants of the rectified linear unit (ReLU), such as the exponential linear unit (ELU), which is
defined in Eq. 6 and shown in Fig. 8b:

γ(x) = tanh(x) = 2
1+ e−x

−1, (5)

γ(x) = ELU(x) =

{
α(ex −1) x < 0
x x ≥ 0, (6)

where α is a multiplicative weight that often holds a value of unity.
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(a) Hyperbolic tangent (tanh) activation function.
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(b) Exponential linear unit (ELU) activation func-
tion.

Figure 8: Illustration of commonly used ANN activation functions over a 1-D input feature space,
x, where −5 ≤ x ≤ +5.

2.1.2 Model Training

The training procedure for an ANN first involves the random initialization of all weights along
the connections between neurons, inputs, and outputs. The input data, (xk,xk+1, ...,xs), are then
provided to the ANN in a feedforward manner and a predicted value, ŷj , is produced. This predicted
value is then tested against the provided output, or labeled, data associated with the input data,
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and a cost function, Ẽ, is evaluated. This cost function is a numerical description of the error
between the labeled output data, yj , and the predicted output, ŷj . Commonly used cost functions
associated with ANN training are the mean absolute error (MAE) and the mean squared error
(MSE) shown in Eqs. 7 and 8, respectively:

MAE =
1
n

n∑
j=1

|yj − ŷj | , (7)

MSE =
1
n

n∑
j=1

(yj − ŷj)
2 , (8)

where n is the number of experimental data samples. This error calculated by the cost function is
then propagated from the output, ŷj , back through the ANN via the chain rule of differentiation:

∂Ẽ

∂ωhk
=

∂Ẽ

∂ŷj

∂ŷj

∂z2h

∂z2h

∂ωph

∂ωph

∂z1h

∂z1h

∂ωhk
, (9)

where ∂Ẽ/ωhi is the change in error associated with changing the value of the weight, ωhi, between
the input layer and the first hidden layer for the two-layer MLP shown in Fig. 7. This method for
propagating the error back through the ANN has been coined backpropagation by Rumelhart et
al. [15]. The gradients calculated using this backpropagation are typically used with an optimization
algorithm (e.g., stochastic gradient descent, adaptive gradient algorithm (Adagrad) [16], RMSProp
[17]) to update the weights along each connection in the ANN. One optimization cycle through the
training data samples, n, is considered to be one epoch.

2.1.3 Model Regularization

Various forms of regularization are often used in the ANN training process to promote optimization
convergence. The first type of regularization that is often used involves the rescaling of all input
features to a common basis (i.e., 0 ≤ xk ≤ 1) before they are presented to the ANN [18]. In general,
input features may differ by orders of magnitude from each other (i.e., xk<< xl), mitigating the
optimizer’s ability to find a global minimum. This simple data manipulation ensures that the
trained weight values along connections of the ANN are of similar magnitudes, thus improving
convergence and stabilization of the optimizer. It can be inferred from the unscaled input feature
space in Fig. 9a that the gradient in the xl direction, ∂f(xk,xl)/∂xl, is much larger than the
gradient in the xk direction, ∂f(xk,xl)/∂xk, meaning that an optimizer would have more difficulty
converging to the global minimum than for the scaled input feature space in Fig. 9b, where the
gradients in both directions, xk and xl, are equivalent. A similar rescaling can be applied to the
output of each hidden layer to further improve optimization convergence.

Another commonly used form of regularization can be described as penalizing Ẽ with L1 regular-
ization (i.e., ridge regression), L2 regularization (i.e., lasso regression), or both (i.e., elastic net).
With L1 regularization, the sum of the absolute values of all weight parameters, shown in Eq. 10,
is added to Ẽ before the backpropagation process:

L1 =
∑

i

∑
k

|ωik|. (10)
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Figure 9: Comparison between arbitrary unscaled and scaled input feature spaces, (xk,xl).

Since the general functional form of the absolute value operator behaves like a ‘ridge,’ this penaliza-
tion drives learned weight values along connects of the ANN to zero. In contrast, L2 regularization
adds the sum of the squared weight parameters, which can be seen in Eq. 11:

L2 =
∑

i

∑
k

ω2
ik. (11)

This penalization reduces the learned weight values toward zero, without necessarily making them
zero, since the parabolic functional form of the square operator will ‘lasso’ about zero. Both the
L1 and L2 penalizations serve to mitigate the ANN from learning large weight values along each
connection, thus deterring the ANN from over- or underfitting the training data.

Dropout can also be used as a form of regularization to prevent overfitting the training data [19].
This dropout method randomly eliminates a certain percentage of the neurons in the hidden layer
during each epoch of the optimization procedure, which ensures that the weights associated with
any particular neuron are not overtrained. Other forms of regularization include, but are not
limited to, various ensemble methods (e.g., K-fold cross-validation [20], boosting [21], bootstrap
aggregation [22]) and imposing an early stopping criterion on the training process based upon a
satisfactory value of Ẽ.
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3 Artificial Neural Network Prediction Modeling (ANNPM)

3.1 Process Summary

The ANNPM portion of the AANNT deals exclusively with the development of ANN prediction
models and leverages ML functionalities available in Google’s TensorFlow platform [23] and imple-
mented in Python. This software is structured to operate using a namelist file specified by the user.
This namelist allows the user to specify the number, names, and mimimum/maximum values of any
continuous input features to be used in the modeling procedure as well as a flag for enabling the
rescaling of these input features. The specification of categorical (i.e., discrete) inputs, the number
and names of the outputs, and the rescaling of the output data is also available to the user. The
ordering of these user-defined namelist inputs associated with the input features should follow the
same structure as the training data file supplied by the user and specified in the namelist, with the
categorical input features being listed first, followed by the continuous input features, and lastly,
the labeled data.

The software then organizes the provided input feature space, and rescales the continuous input
features using Eq. 12, if this option is selected by the user:

x̃k =
xk −xkmin

xkmax −xkmin

, (12)

where the subscript, k, corresponds to the number of input features. In Eq. 12, x̃ corresponds to
the rescaled input feature, x, ranging from 0 ≤ x̃ ≤ 1. If categorical input features are specified,
ANNPM uses one-hot encoding to generate additional binary input features correspondent to the
discrete values of each categorical input feature. For example, since the number of rotor blades,
Nb, is a categorical feature with values correspondent to three-, four-, and five-bladed rotors, the
one-hot encoding procedure would generate three input features; each correspondent to either a
three-, four-, or five-bladed rotor. If a particular input data sample consists of a three-bladed rotor,
the column associated with three-bladed rotors would hold a value of one, whereas the columns
associated with four- and five-bladed rotors would hold values of zero. An example of one-hot
encoding can be seen in Table 2.

Table 2: Illustration of categorical input feature one-hot encoding for the
number of rotor blades, Nb.

Number of Rotor Blades (Nb)
Nb = 3 Nb = 4 Nb = 5

1 0 0

Typical ANN prediction modeling involves the use of test data to query the model after each epoch
of the training procedure to ensure the ANN will generalize to new data previously unseen by the
model. These test data can either be supplied to ANNPM in a separate data file or the user can
specify to split the training data by a percentage that will be used for test data. Though it is not
recommended to split the training data if Design of Experiments (DoE) is used for input feature
space generation, this training/test data split is a commonly used method, so its implementation was
made available in ANNPM. These test data are processed identically to the previously mentioned
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techniques used for the training data.

After the training and test data have been processed by ANNPM, the architecture of the ANN
is then established. The namelist allows the user specification of one or more of the following
parameters: the number of hidden layers, the number of neurons in each hidden layer, the activation
function to be used for each neuron in the hidden layers, the activation function to be used in the
output(s), the cost function to be used in the training procedure, the magnitude of L1 and L2
regularization to be used in the training procedure, dropout rate percentage, and the maximum
number of epochs in the training procedure. Since TensorFlow is utilized by ANNPM as the basis for
ML routines, these user-specified parameters can hold any value that is recognized by TensorFlow
with a vast range of selection. Separate prediction models are then internally created by ANNPM
for each respective combination of the various user-defined ANN parameters.

The weights for all ANN connections between the inputs, hidden layers, and outputs are initialized
using the He method [24] , which initializes each weight based on a random sampling from a uniform
distribution between [−β,+β], with β being defined as:

β =

√
6
m

, (13)

where m is the number of connections to a particular neuron. This He method has shown ANN
training convergence superiority over other initialization techniques, especially when used with
ReLU activation functions or their variants [24].

The ANN training procedure utilizes the adaptive momentum estimation (ADAM) optimizer [25],
which combines the advantages of both the AdaGrad [16] and RMSProp [17] optimizers. The
ADAM optimizer is “computationally efficient, has little memory requirements, is invariant to
diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data
and/or parameters [25].” This optimizer entails a momentum-based stochastic gradient descent
where the optimization learning rate is continuously modified during the training procedure using
bias-corrected exponential moving average estimates of the gradient’s mean and variance.

The different ANN prediction models generated by ANNPM for each combination of the user-
defined parameters are sequentially trained over the processed training data and are evaluated over
the specified test data at each epoch using a user-specified evaluation function. An early stopping
criterion is also implemented, which stops the training procedure if there is no improvement in the
user-specified evaluation function after a default value of 250 training epochs, although the user
may specify a different number of epochs in the namelist.

Once all ANN prediction models have been trained, ANNPM evaluates and exports the MAE, the
root mean squared error (RMSE), the MSE, the mean absolute scaled error (MASE), the mean
absolute percentage error (MAPE), and the coefficient of determination (R2

d) values calculated over
both the training and test data, as well as the model form parameters for each model. The namelist
allows the user to specify whether to solely retain the optimal model, in terms of test accuracy, or to
retain all trained models. The final ANN prediction model(s) are then saved under a user-specified
name in the Hierarchical Data Format (HDF).
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3.2 Setup and Execution

ANNPM is standalone Python code, requiring only a user-generated namelist file, training and/or
test data, and the installation of the following Python packages:

• sys

• os

• f90nml

• numpy

• pandas

• importlib

• tensorflow

• time

The user is referred to the Anaconda user-guide page: https://docs.anaconda.com/anaconda/
user-guide/tasks/install-packages/ for instruction on package installation. This section of
the manual explains the various user-specified inputs to the namelist as well as how to properly
execute ANNPM.

3.2.1 User-specified Namelist

The general form of the user-specified ANNPM namelist consists of four sections correspondent to
the input data, input feature description, ANN grid search parameters, and output data, respec-
tively. The first section of the ANNPM namelist is the &InputData section, which can be seen in
Ex. 1.

Example 1: Illustration of the &InputData section of the user-specified ANNPM namelist.
&InputData
! F i l e l o c a t i o n /name f o r the t r a i n i n g data .
strTrainingDataFileName = ’ t r a i n i n g d a t a . in ’

! The type o f t e s t data to be used . The d e f a u l t va lue o f ’ s p l i t ’ can be used i f s epara te
! t e s t data are u n a v a i l a b l e and the user wishes to s p l i t the t r a i n i n g data i n t o
! t r a i n i n g / t e s t data . I f the user has s epara te t e s t data , the ’ f i l e ’ opt ion can be used .
strTestDataType = ’ f i l e ’

! Percentage o f t o t a l t r a i n i n g data to be used f o r t r a i n i n g i f strTestDataType = ’ s p l i t ’ .
! The r e s t o f the data (1 − f l t D a t a S p l i t R a t i o ) w i l l be used f o r t e s t data . The d e f a u l t
! va lue i s 0 . 8 .
f l t D a t a S p l i t R a t i o = 0 .8

! F i l e l o c a t i o n /name f o r the t e s t i n g data . Only needed i f strTestDataType = ’ f i l e ’ .
strTestDataFileName = ’ t e s t d a t a . in ’
/

The data to be used for training the ANN are to be contained in a text file beginning with three rows
of text, followed by space-separated columns consisting of categorical input features, continuous
input features, and output data, as shown in Ex. 2. This format is identical to that used by the
ANOPP2 Design of Experiments Tool (ADoET) and is used here for consistency.
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Example 2: Illustration of ANNPM training data format.
Latin HyperCube Design (LHD)
Design Points : 40
MaxPro Value : 4.660023328054391E−021
2 3849 6 . 0 3 2 . 3 2 8 4 3 . 7 13 −4.6 59.29862941
2 3576 6 . 1 5 1 . 5 2 0 . 3 2 5 . 3 6 . 5 −5 23.111179
2 5937 7 . 7 6 2 . 4 8 8 . 5 37 15 −4.9 9.473326792
2 5447 7 . 9 6 1 . 5 6 0 . 6 4 4 . 1 1 0 . 5 4 . 2 85.04665381
2 4744 7 . 4 9 1 . 7 2 . 9 4 9 . 9 6 . 2 3 . 6 69.53985482
2 5201 7 . 5 9 2 . 9 8 8 . 9 2 1 . 4 1 4 . 4 −4.4 38.38550923
3 3676 7 . 8 6 1 . 5 3 8 . 8 3 3 . 2 1 1 . 4 −0.6 25.4384549
3 4091 6 . 0 4 1 . 7 3 8 . 6 2 2 . 3 6 . 8 −2.6 38.53058865
3 5767 6 . 4 1 . 6 7 4 . 1 21 9 . 6 0 . 4 48.42523567
3 5929 7 . 3 9 1 . 5 4 7 . 7 3 1 . 3 6 . 7 5 135.0408063
3 5522 7 . 1 6 1 . 8 7 0 . 9 3 2 . 7 6 0 . 7 54.68018672
3 4895 7 . 9 2 2 . 8 9 5 3 6 . 2 1 3 . 7 4 . 1 167.7816834
4 4410 6 . 1 3 1 . 5 6 8 . 3 4 8 . 3 1 4 . 4 3 . 2 70.75052124

The columns, from left to right, correspond to the input features outlined in Table 1 and are ordered
first by categorical input features, followed by continuous input features, and lastly, the labeled
data. The name of this training data file is specified in the namelist via the input, strTraining-
DataFileName. Since test data are necessary to validate the ANN prediction model throughout
the training procedure, the input, strTestDataType, allows two options: ‘file’ and ‘split’. If the user
selects ‘file’, then the test data file, strTestDataFileName, must be specified and must follow the
previously defined data formatting structure shown in Fig. 2. Otherwise, the user can select the
‘split’ option, where the training data are randomized, then split between training and test data.
The input, fltDataSplitRatio, must be specified if using the ‘split’ option and must hold a float
value between zero and one. The fltDataSplitRatio value is the ratio of input training data that
will be used for training and (1−fltDataSplitRatio) will be used for test data.

The second section of the ANNPM namelist, &InputFeatureDescription, shown in Ex. 3 deals with
the number, name, and minimum/maximum values of the input features.

Example 3: Illustration of the &InputFeatureDescription section of the user-specified ANNPM
namelist.
&InputFeatureDescr ipt ion
! I n t e g e r va lue f o r the number o f cont inuous f e a t u r e s .
nContinuousInputs = 7

! Continuous input names .
strContinuousInputNames = ’RPM’ , ’ Radius ’ , ’ Target Thrust ’ , ’Camber ’ ,
’ Camber loc ’ , ’ Thickness ’ , ’ C o l l e c t i v e ’

! Boolean to normal ize cont inuous inputs . The d e f a u l t va lue o f True i s recommended .
blnNormal izeContinuousInputs = True

! Lower va lue s o f each cont inuous input . Only needed
! i f b lnNormal izeContinuousInputs = True .
f ltContinuousInputRangeLow = 3500 , 6 , 1 . 5 , 0 , 20 , 6 , −5

! Upper va lue s o f each cont inuous input . Only needed
! i f b lnNormal izeContinuousInputs = True .
f l tContinuousInputRangeHigh = 6000 , 8 , 3 , 9 , 50 , 15 , 5

! I n t e g e r va lue f o r the number o f c a t e g o r i c a l inputs . The d e f a u l t va lue i s 0 .
nCategor i ca l Input s = 1

! Name o f the c a t e g o r i c a l inputs . Only needed i f nCategor i ca l Input s != 0 .
st rCategor ica l InputNames = ’Nb ’
/
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The input, nContinuousInputs, is an integer value corresponding to the number of continuous input
features, which are then named via the input, strContinuousInputNames, in the same order as in
the data file specified via strTrainingDataFileName in the &InputData section of the ANNPM
namelist. The inputs, fltContinuousInputRangeLow and fltContinuousInputRangeHigh, correspond
to the minimum and maximum values of each continuous input feature, respectively. The user
can specify, via the boolean input, blnNormalizeContinuousInputs, whether ANNPM rescales the
continuous input features using Eq. 12. Lastly, the user can specify any number of categorical input
features via nCategoricalInputs that are named with strCategoricalInputNames, again, having the
same order as in the data file specified via strTrainingDataFileName in the &InputData section of
the ANNPM namelist.

The third section of the ANNPM namelist, &GridSearchParameters, deals with the various hyper-
parameters to be used during the grid search procedure to find the optimal ANN prediction model.
An example of this third namelist section can be seen in Ex. 4.
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Example 4: Illustration of the &GridSearchParameters section of the user-specified ANNPM
namelist.
&GridSearchParameters
! Des i red a c t i v a t i o n f u n c t i o n s f o r g r i d search . ’ gelu ’ and ’ swish ’ are recommended
! and ’ swish ’ i s the d e f a u l t va lue .
s t r A c t i v a t i o n F u n c t i o n s = ’ tanh ’ , ’ e lu ’

! Des i red output a c t i v a t i o n f u n c t i o n s f o r g r i d search . The d e f a u l t va lue o f ’ l i n e a r ’ i s
! recommended .
s t rOutputAct ivat ion = ’ r e l u ’ , ’ l i n e a r ’

! Loss f u n c t i o n s f o r g r i d search . The d e f a u l t va lue o f ’ huber ’ i s recommended .
s t rLos sFunct ions = ’mae ’ , ’ rsme ’

! Percentage o f neurons in each hidden l a y e r to be randomly dropped at each epoch during
! t r a i n i n g . The d e f a u l t va lue i s 0 or no dropout .
f l tDropoutRates = 0 . 2 5 , 0 .50

! Number o f hidden l a y e r s . The d e f a u l t va lue i s 1 .
intHiddenLayers = 1 , 2

! Number o f neurons or a c t i v a t i o n f u n c t i o n s in each hidden l a y e r . The d e f a u l t
! va lue i s 50 .
intNeurons = 100 , 250

! L1 r e g u l a r i z a t i o n va lue s . The d e f a u l t va lue i s 0 or none .
f l t L 1 R e g u l a r i z a t i o n = 0 . 0 1 , 0

! L2 r e g u l a r i z a t i o n va lue s . The d e f a u l t va lue i s 0 or none .
f l t L 2 R e g u l a r i z a t i o n = 0 . 0 1 , 0 . 1

! Maximum number o f t r a i n i n g epochs or pas s e s through the t r a i n i n g data . The d e f a u l t
! va lue i s 500 .
nMaxEpochs = 1000

! Number o f epochs f o r e a r l y stopping in the t r a i n i n g procedure . The d e f a u l t va lue i s 100 .
intEar lyStopp ing = 250

! Verbos i ty used in t r a i n i n g . Options are True or Fa l se . The d e f a u l t va lue i s True .
b lnVerbos i ty = True

! Test f l a g f o r r e g r e s s i o n t e s t i n g . Should be s e t to the d e f a u l t va lue o f Fa l se
! f o r a p p l i c a t i o n .
blnTest = Fal se
/

One or multiple values can be used with all inputs for the &GridSearchParameters section except
for nMaxEpochs, which is the integer number of maximum training epochs if the early stopping
criterion is not met (typically set to 1000), intEarlyStopping, which is the number of epochs over
which the early stopping criterion is evaluated, blnVerbosity, which is a boolean to specify output
verbosity during the training procedure, and blnTest, which is a boolean that specifies limited
output data for developmental testing purposes only.

The inputs, strActivationFunctions, strOutputActivation, and strLossFunctions, correspond to the
activation function used by all hidden layer neurons, the activation function used by the output
layer, and the cost function used in the ADAM optimization, respectively. Since Tensorflow is used
by ANNPM, values for these two inputs can hold any activation function or loss function recognized
by TensorFlow and the user is referred to https://www.tensorflow.org/api_docs/python/tf/
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keras/activations and https://www.tensorflow.org/api_docs/python/tf/keras/losses for
a comprehensive list of available inputs for activation functions and loss functions, respectively.
Based upon user experience and academic literature, variants of ReLU, specifically the Gaussian
Error Linear Unit (GELU) and the Swish [26] activation functions, have shown great success for
regression problems. For the cost function, MAE or HUBER, which is a combination of both
the MAE and MSE cost functions, are recommended for regression problems. If the output data
are very small in magnitude (e.g., 0.01), however, the mean squared logarithmic error (MSLE) is
recommended.

The inputs, intHiddenLayers and intNeurons, correspond to the number of hidden layers and the
number of neurons in each hidden layer, which define the model architectures to be used in the
optimal model grid search. Three forms of regularization can be user-specified in the ANNPM
namelist: fltL1Regularization, fltL2Regularization, and fltDropoutRates. These three types of reg-
ularization have been discussed in Section 2.1.3 of this reference manual and values of zero can be
used for their exclusion.

The last section of the ANNPM namelist, &OutputData, corresponds to the location, number,
names, and scale of the models to be outputted by ANNPM. An example of this last section can
be seen in Ex. 5.

Example 5: Illustration of the &OutputData section of the user-specified ANNPM namelist.
&OutputData
! Locat ion f o r where to save p r e d i c t i o n models . The d e f a u l t va lue i s ’ ann models / ’ .
strOutputFunct ionLocat ion = ’ ann models / ’

! Number o f model outputs . The d e f a u l t va lue i s 1 .
nModelOutputs = 2

! Name o f the output f u n c t i o n s . The d e f a u l t va lue i s ’ output ’ .
strOutputFunctionNames = ’ Induced Power ’ , ’ Pro f i l e Power ’

! Boolean to normal ize the outputs . The d e f a u l t va lue o f Fa l se i s recommended .
blnNormalizeOutput = False

! Lower va lue s o f each output . Only needed i f blnNormalizeOutput = True .
fltOutputRangeLow = 0 , 0

! Upper va lue s o f each output . Only needed i f blnNormalizeOutput = True .
f ltOutputRangeHigh = 200 , 200

! Evaluat ion f u n c t i o n f o r opt imal model s e l e c t i o n . The d e f a u l t va lue i s ’mae ’ .
! Options are ’mae ’ , ’ rsme ’ , ’ mse ’ , ’mape ’ , ’ mase ’ , and ’R2 ’ .
s t rEvalFunct ion = ’mae ’

! Save ’ a l l ’ models or j u s t the ’ opt ’ model . The d e f a u l t va lue i s ’ a l l ’ .
strSavedModels = ’ a l l ’

! Output summary f i l e name . The d e f a u l t va lue i s ’ Model Summary . out ’ .
strOutputSummaryFileName = ’ Model Summary . out ’
/

As the names suggest, strOutputFunctionLocation, nModelOutputs, and strOutputFunctionNames
correspond to the directory location, the number of outputs, and the ANN prediction model names
used by ANNPM to save the prediction models. The user can specify whether to save only the
optimal ANN prediction model (‘opt’) evaluated over strEvalFunction or to save all ANN prediction
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models (‘all’) trained in the grid search procedure using the input, strSavedModels. A summary
file containing the ANN architecture, as well as the evaluation functions, discussed in Section 3.1,
calculated over both the training data and test data is outputted by ANNPM with a file name
specified using strOutputSummaryFileName.

3.3 Demonstration

To run ANNPM, the user need only run the ANNPM.py script located in the ‘Source’ directory.
This script should be run in the directory containing the user-specified namelist, examples of which
can be found in the ‘Test/Annpm’ directory. A command line argument correspondent to the
namelist file name is also necessary to run ANNPM. For example, if the user were to execute
ANNPM from the ‘Test/Annpm/full data’ directory, the command line execution would take the
following form: ‘python ../../../Source/ANNPM.py ANNPM.nml’.

Five examples are provided with AANNT, which correspond to the full data case from Ref. [2],
the full data case involving output scaling (note that the scaling is only used during the model
training/execution; the user inputted training/test data should not be modified and the output
data will be rescaled from coded units back to natural units), the full data case with two outputs, a
reduced number of inputs case with the exclusion of the categorical input, and a reduced input case
with the inclusion of a second, arbitrary categorical input feature. These examples were created
to illustrate the implementation of ANNPM with varying numbers and types of input features, as
well as the use of ‘split’ and ‘file’ data types for strTestDataType. In general, these namelist files
can be copied and modified by the user to accommodate any regression problem, so long as input
data are supplied in the proper format, specified in Ex. 1.

Since the execution of ANNPM is identical for all five example cases, these examples will not be
discussed in detail. Only brief highlights of what to expect throughout the ANN prediction modeling
procedure will be shown. For example, the user can select True for blnVerbosity to ensure ANNPM
is functioning properly. This will output the cost function value and MAPE values calculated over
both the training and test data at each epoch. An example of this command line output can be
seen in Ex. 6 where nMaxEpochs has been set to five for demonstration purposes.

Example 6: Illustration of the ANNPM command line output for nMaxEpochs = 5 and
blnV erbosity = True.
Epoch 1/5
142/142 [==========] − 1 s 4ms/ s t e p − l o s s : 70 .9160 − MAE: 62.3023 − r o o t m e a n s q u a r e d e r r o r : 74 .5974 −
MSE: 5564.7700 − MAPE: 86.3807 − v a l l o s s : 66 .3161 − val MAE : 60.0252 − v a l r o o t m e a n s q u a r e d e r r o r :
70 .6326 − val MSE : 4988.9619 − val MAPE : 84.3498
Epoch 2/5
142/142 [==========] − 1 s 4ms/ s t e p − l o s s : 70 .9160 − MAE: 62.3023 − r o o t m e a n s q u a r e d e r r o r : 74 .5974 −
MSE: 5564.7700 − MAPE: 86.3807 − v a l l o s s : 66 .3161 − val MAE : 60.0252 − v a l r o o t m e a n s q u a r e d e r r o r :
70 .6326 − val MSE : 4988.9619 − val MAPE : 84.3498

Epoch 3/5
142/142 [==========] − 0 s 3ms/ s t e p − l o s s : 52 .0023 − MAE: 40.4462 − r o o t m e a n s q u a r e d e r r o r : 52 .3011 −
MSE: 2735.4009 − MAPE: 54.3930 − v a l l o s s : 46 .7289 − val MAE : 34.9470 − v a l r o o t m e a n s q u a r e d e r r o r :
45 .3109 − val MSE : 2053.0798 − val MAPE : 62.3843

Epoch 4/5
142/142 [==========] − 0 s 3ms/ s t e p − l o s s : 44 .1299 − MAE: 31.2779 − r o o t m e a n s q u a r e d e r r o r : 42 .6657 −
MSE: 1820.3657 − MAPE: 46.3757 − v a l l o s s : 37 .5834 − val MAE : 21.4946 − v a l r o o t m e a n s q u a r e d e r r o r :
30 .0063 − val MSE : 900.3810 − val MAPE : 47.1466

Epoch 5/5
142/142 [==========] − 0 s 3ms/ s t e p − l o s s : 36 .8892 − MAE: 21.9505 − r o o t m e a n s q u a r e d e r r o r : 31 .9958 −
MSE: 1023.7319 − MAPE: 33.0207 − v a l l o s s : 30 .4601 − val MAE : 15.6950 − v a l r o o t m e a n s q u a r e d e r r o r :
24 .2853 − val MSE : 589.7770 − val MAPE : 37.0260

Saving ANN Models
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Upon successful execution of ANNPM, the user should expect the strOutputFunctionLocation to be
populated with ANN prediction models in HDF format named according to strOutputFunctionName
followed by the grid search training iteration number for each particular prediction model. The
output file specified by strOutputSummaryFileName will be populated with the model architecture
and various evaluation metrics of each model trained in the grid search. It should be noted that
if more than one output is specified by the user, the evaluation metric used for optimal model
identification will be a value averaged over all outputs. An example output file is shown in Ex. 7.

Example 7: Illustration of the output file generated by ANNPM and specified by the namelist
input, strOutputSummaryFileName.
Model 15 Summary :
Hidden Layer A c t i v a t i o n Function Type : g e l u
Output Layer A c t i v a t i o n Function Type : l i n e a r
Loss Function Type : huber
Number o f Hidden Layers : 2
Number o f Neurons per Layer : 250
Dropout Rate : 0 . 2 5
Amount o f L1 R e g u l a r i z a t i o n : 0
Amount o f L2 R e g u l a r i z a t i o n : 0 . 1
Model 15 Training MAE: { ’ Induced Power ’ : [ 1 5 . 6 8 9 4 1 8 7 9 2 7 2 4 6 1 ] }
Model 15 Training RMSE: { ’ Induced Power ’ : [ 2 3 . 8 3 3 2 5 0 0 4 5 7 7 6 3 6 7 ] }
Model 15 Training MSE: { ’ Induced Power ’ : [ 5 6 8 . 0 2 3 8 0 3 7 1 0 9 3 7 5 ] }
Model 15 Training MASE: { ’ Induced Power ’ : [ 0 . 2 3 0 3 1 2 1 6 2 0 8 3 2 2 4 5 3 ] }
Model 15 Training MAPE: { ’ Induced Power ’ : [ 2 4 . 2 0 9 1 3 6 9 6 2 8 9 0 6 2 5 ] }
Model 15 Training Rdˆ 2 : { ’ Induced Power ’ : [ 0 . 6 6 6 0 2 7 5 9 4 1 0 9 4 7 2 1 ] }
Model 15 Test MAE: { ’ Induced Power ’ : [ 1 4 . 6 6 5 0 3 8 1 0 8 8 2 5 6 8 4 ] }
Model 15 Test RMSE: { ’ Induced Power ’ : [ 2 0 . 5 9 4 2 1 9 2 0 7 7 6 3 6 7 2 ] }
Model 15 Test MSE: { ’ Induced Power ’ : [ 4 2 4 . 1 2 1 8 8 7 2 0 7 0 3 1 2 5 ] }
Model 15 Test MASE: { ’ Induced Power ’ : [ 0 . 2 0 9 3 7 5 5 3 3 4 9 7 7 0 8 6 3 ] }
Model 15 Test MAPE: { ’ Induced Power ’ : [ 2 9 . 3 5 5 2 0 5 5 3 5 8 8 8 6 7 2 ] }
Model 15 Test Rdˆ 2 : { ’ Induced Power ’ : [ 0 . 7 1 5 5 1 5 7 5 7 7 3 4 3 4 3 6 ] }
Model 15 Elapsed Training Time : 4.859565824000001 seconds

Model 16 Summary :
Hidden Layer A c t i v a t i o n Function Type : g e l u
Output Layer A c t i v a t i o n Function Type : swish
Loss Function Type : huber
Number o f Hidden Layers : 2
Number o f Neurons per Layer : 250
Dropout Rate : 0 . 2 5
Amount o f L1 R e g u l a r i z a t i o n : 0
Amount o f L2 R e g u l a r i z a t i o n : 0 . 1
Model 16 Training MAE: { ’ Induced Power ’ : [ 1 5 . 6 9 1 8 2 8 7 2 7 7 2 2 1 6 8 ] }
Model 16 Training RMSE: { ’ Induced Power ’ : [ 2 4 . 2 3 1 3 8 9 9 9 9 3 8 9 6 5 ] }
Model 16 Training MSE: { ’ Induced Power ’ : [ 5 8 7 . 1 6 0 2 7 8 3 2 0 3 1 2 5 ] }
Model 16 Training MASE: { ’ Induced Power ’ : [ 0 . 2 3 0 3 4 7 5 3 8 6 2 2 4 7 6 9 ] }
Model 16 Training MAPE: { ’ Induced Power ’ : [ 2 3 . 2 4 5 6 3 0 2 6 4 2 8 2 2 2 7 ] }
Model 16 Training Rdˆ 2 : { ’ Induced Power ’ : [ 0 . 6 5 4 7 7 6 2 0 9 1 7 8 4 1 3 3 ] }
Model 16 Test MAE: { ’ Induced Power ’ : [ 1 6 . 1 5 3 6 1 5 9 5 1 5 3 8 0 8 6 ] }
Model 16 Test RMSE: { ’ Induced Power ’ : [ 2 2 . 0 7 9 8 5 4 9 6 5 2 0 9 9 6 ] }
Model 16 Test MSE: { ’ Induced Power ’ : [ 4 8 7 . 5 1 9 9 8 9 0 1 3 6 7 1 9 ] }
Model 16 Test MASE: { ’ Induced Power ’ : [ 0 . 2 3 0 6 2 8 2 4 1 9 9 1 0 6 1 1 ] }
Model 16 Test MAPE: { ’ Induced Power ’ : [ 2 8 . 3 0 5 5 6 8 6 9 5 0 6 8 3 6 ] }
Model 16 Test Rdˆ 2 : { ’ Induced Power ’ : [ 0 . 6 7 2 9 9 0 8 1 0 3 1 3 4 1 7 2 ] }
Model 16 Elapsed Training Time : 4.812205824000003 seconds

The b e s t model , based on mase e v a l u a t e d / averaged over output i s model : 10

Total e l a p s e d time to t r a i n a l l models : 382.77096965 seconds
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4 Artificial Neural Network Model Deployment (ANNMD)

4.1 Process Summary

The ANNMD portion of the AANNT follows a similar structure as ANNPM, however, this tool
serves the purpose of evaluating an ANN prediction model over user-specified data and calculat-
ing accuracy metrics. Similar to ANNPM, ANNMD is structured to operate using a namelist
file specified by the user. This namelist allows the user to specify the number, names, and mini-
mum/maximum values of any continuous input features or outputs used in the modeling procedure
performed by ANNPM, as well as a flag for enabling the rescaling of these input features and
outputs, similar to the namelist for ANNPM shown in Ex. 1. The categorical input features are
specified in the namelist; however, the user must also specify the discrete values of each categori-
cal input feature. In general, any data points specified by the user for model evaluation may not
include all discrete values of a categorical input feature, so they must be specified in the namelist
to allow for proper one-hot encoding.

Once the input feature descriptions have been identified, the ANNMD namelist allows the user to
specify the data over which to deploy the ANN prediction model. These input feature data points
can either be prescribed within the namelist, or the user can specify a file containing the evaluation
data, which has an identical format to the training and test data used by ANNPM. The evaluation
data are then preprocessed by ANNMD identically to how the training/test data were processed by
ANNPM with one-hot encoding of categorical input features and continuous input feature scaling,
if specified by the user.

The name and location of an ANN prediction model created by ANNPM are specified in the
namelist and the model is deployed over the processed evaluation data. If the supplied evaluation
data contain labeled data associated with the input feature design points, the user can specify to
calculate accuracy metrics over the evaluation data. This is useful for the calculation of additional
error metrics such as MAPE, the maximum residual error, and the R2

d score,

R2
d = 1−

∑n
j=1 (yj − ŷj)

2∑n
j=1 (yj − ȳn)

2 , (14)

where ȳn is the mean calculated over all evaluation data. In general, the user may typically wish to
deploy the ANN prediction model over evaluation data where no labeled data are available; however,
if these labeled data are known, such as for test data, this functionality can prove beneficial.

Lastly, ANNMD allows the user to specify whether the predictions calculated over the evaluation
data are to be exported in tabular format. This data format specification can be useful if additional
postprocessing of the model predictions is necessary.

4.2 Setup and Execution

ANNMD is a standalone Python code, requiring only a user-generated namelist file, evaluation data,
prediction models developed by ANNPM, and the installation of the following Python packages:

• sys

• os
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• f90nml

• numpy

• pandas

• tensorflow

• scikit-learn

The user is referred to the Anaconda user-guide page: https://docs.anaconda.com/anaconda/
user-guide/tasks/install-packages/ for instruction on package installation. This section of
the manual explains the various user-specified inputs to the namelist as well as how to properly
execute ANNMD.

4.2.1 User-specified Namelist

The general form of the user-specified ANNMD namelist consists of four sections correspondent to
the input data, input feature description, evaluation data description, and output data, respectively.
The first section of the ANNMD namelist is the &InputData section, which can be seen in Ex. 8.

Example 8: Illustration of the &InputData section of the user-specified ANNMD namelist.
&InputData
! Name o f the model d i r e c t o r y . The d e f a u l t va lue i s ’ . / ’ or the
! cur r ent working d i r e c t o r y .
strModelLocat ion = ’ . / ’

! Name o f the p r e d i c t i o n model f i l e generated by ANNPM.
strModelName = ’ f u l l d a t a . h5 ’

! Def ine whether the e v a l u a t i o n data w i l l come from a f i l e or w i l l be input
! from namel i s t . Options are ’ f i l e ’ and ’ input ’ . The d e f a u l t va lue i s ’ input ’ .
strEvalType = ’ f i l e ’

! Evaluat ion data f i l e name . Only needed i f strEvalType = ’ f i l e ’ .
s t r E v a l F i l e = ’ f u l l d a t a . in ’
/

The inputs, strModelLocation and strModelName, correspond to the directory location and the
name of an ANN prediction model created using ANNPM, respectively. The user has two choices
when selecting the evaluation data over which to execute a prediction model using ANNMD, which
are specified using strEvalType. The first selection choice is ‘file’, which uses data from a text file
specified with strEvalFile and having a similar format to that discussed in Section 3.2.1. The only
difference is that the evaluation data file has one header row, as opposed to three. An example of
an input data file can be seen in Ex. 9.

Example 9: Illustration of ANNMD evaluation data format for strEvalTpe = ‘file’.
# I n p u t Data
2 5000 7 . 5 0 2 . 0 0 5 . 0 0 5 0 . 0 0 1 1 . 0 0 3 . 0 0
2 4500 6 . 5 0 2 . 0 0 5 . 0 0 5 0 . 0 0 1 2 . 5 0 5 . 0 0
4 3750 6 . 0 0 3 . 0 0 7 . 5 0 4 5 . 0 0 1 5 . 0 0 5 . 0 0

The columns of the data in this input data file correspond to the input features outlined in Table
1, however, the user can specify any arbitrary value for the input features within the minimum/-
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maximum feature ranges. The second selection option for strEvalType is ‘input’, where the user
can specify the evaluation data directly in the namelist, via the &EvaluationDataDescription input
section. An example is shown in Ex. 10.

Example 10: Illustration of &EvaluationDataDescription for strEvalTpe = ‘input’.
&Evaluat ionDataDescr ipt ion
! Values o f Nb f o r three p r e d i c t i o n s .
strEvalCategory Nb = ’ 2 ’ , ’ 2 ’ , ’ 4 ’

! Values o f RPM f o r three p r e d i c t i o n s .
fltEvalContinuous RPM = 5000 , 4500 , 3750

! Values o f Radius f o r three p r e d i c t i o n s .
f l tEva lCont inuous Radius = 7 . 5 0 , 6 . 5 0 , 6 .00

! Values o f Target Thrust f o r three p r e d i c t i o n s .
f l tEva lCont inuous Target Thrust = 2 . 0 0 , 2 . 0 0 , 3 .00

! Values o f Camber f o r three p r e d i c t i o n s .
f l tEvalContinuous Camber = 5 . 0 0 , 5 . 0 0 , 7 .50

! Values o f Camber loc f o r three p r e d i c t i o n s .
f l tEva lCont inuous Camber loc = 50 .00 , 50 .00 , 45 .00

! Values o f Thickness f o r three p r e d i c t i o n s .
f l tEva lCont inuous Thicknes s = 11 .00 , 12 .50 , 15 .00

! Values o f C o l l e c t i v e f o r three p r e d i c t i o n s .
f l t E v a l C o n t i n u o u s C o l l e c t i v e = 3 . 0 0 , 5 . 0 0 , 5 .00
/

In general, each categorical input feature has an input in &EvaluationDataDescription beginning
with strEvalCategory and followed by the name(s) specified using strCategoricalInputNames in the
&InputFeatureDescription section. For example, if strCategoricalInputNames = ‘Nb’, then eval-
uation data for this categorical input feature can be specified in the &EvaluationDataDescription
section using the input, strEvalCategory Nb. Similarly, for continuous input features, the corre-
spondent input in &EvaluationDataDescription begins with fltEvalContinuous and ends with the
name specified using strContinuousInputNames in the &InputFeatureDescription section.

The &InputFeatureDescription section of the ANNMD namelist is almost identical to the &Input-
FeatureDescription section of the ANNPM namelist. The only difference being the specification
of the categorical input feature values. These values are specified using an input that begins with
strCategoryValues , followed by the categorical input feature name specified in strCategoricalIn-
putNames. This specification of categorical feature values is necessary to allow for proper one-hot
encoding, since the evaluation data may not include all discrete values of a categorical input feature.
An example of this section can be seen in Ex. 11.
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Example 11: Illustration of the &InputFeatureDescription section of the user-specified ANNMD
namelist.
&InputFeatureDescr ipt ion

! I n t e g e r va lue f o r the number o f cont inuous f e a t u r e s .
nContinuousInputs = 7

! Continuous input names .
strContinuousInputNames = ’RPM’ , ’ Radius ’ , ’ Target Thrust ’ , ’Camber ’ ,
’ Camber loc ’ , ’ Thickness ’ , ’ C o l l e c t i v e ’

! Boolean to s p e c i f y whether or not to normal ize cont inuous inputs .
! The d e f a u l t va lue o f True i s recommended .
blnNormal izeContinuousInputs = True

! Lower va lue s o f each cont inuous input . Only needed i f blnNormal izeContinuousInputs = True .
f ltContinuousInputRangeLow = 3500 , 6 , 1 . 5 , 0 , 20 , 6 , −5

! Upper va lue s o f each cont inuous input . Only needed i f blnNormal izeContinuousInputs = True .
f l tContinuousInputRangeHigh = 6000 , 8 , 3 , 9 , 50 , 15 , 5

! Number o f c a t e g o r i c a l inputs . The d e f a u l t va lue i s 0 .
nCategor i ca l Input s = 1

! Name o f the c a t e g o r i c a l inputs . Only needed i f nCategor i ca l Input s != 0 .
st rCategor ica l InputNames = ’Nb ’

! Category va lue s o f the c a t e g o r i c a l inputs . Only needed i f nCategor i ca l Input s != 0 .
strCategoryValues Nb = ’ 2 ’ , ’ 3 ’ , ’ 4 ’

! Number o f model outputs . The d e f a u l t va lue i s 1 .
nModelOutputs = 1

! Name o f the output f u n c t i o n ( s ) . The d e f a u l t va lue i s ’ output ’ .
strOutputFunctionNames = ’ Induced Power ’

! Boolean to normal ize the outputs . The d e f a u l t va lue o f Fa l se i s recommended .
blnNormalizeOutput = False

! Lower va lue s o f each output . Only needed in blnNormalizeOutput = True .
fltOutputRangeLow = 0 , 0

! Upper va lue s o f each output . Only needed in blnNormalizeOutput = True .
f ltOutputRangeHigh = 200 , 200
/

The last section of the ANNMD namelist, &OutputData, corresponds to the format and name
of the output file generated by ANNMD as well as the option to calculate accuracy metrics over
the evaluation data, if output data have been included in the evaluation data file specified using
strEvalFile. An example of this namelist can be seen in Ex. 12.
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Example 12: Illustration of the &OutputData section of the user-specified ANNMD namelist.
&OutputData
! Output format type . Options are ’ tab le ’ or ’ none ’ . The d e f a u l t va lue i s ’ tab le ’ .
strOutputFormat = ’ t a b l e ’

! Boolean to s p e c i f y accuracy s c o r e c a l c u l a t i o n . Addi t iona l column with l a b e l e d data
! i s nece s sa ry in input data f i l e f o r t h i s opt ion .
blnAccuracyScore = False

! Output summary f i l e name . The d e f a u l t va lue i s ’ P r e d i c t i o n R e s u l t s . out ’ .
strOutputSummaryFileName = ’ P r e d i c t i o n R e s u l t s . out ’
/

The name of the output file is specified using strOutputSummaryFileName. The format of this
output file can be specified using strOutputFormat, which supports two options: ‘none’ and ‘table’.
Examples of these two options can be seen in Exs. 13 and 14, respectively.

Example 13: Illustration of the output file generated by ANNMD using strOutputFormat= ‘none’.
This f i l e c o n t a i n s the ANN p r e d i c t e d r e s u l t s .

P r e d i c t i o n Number : 1
Nb : 2
RPM: 5000
Radius : 7 . 5
Target Thrust : 2 . 0
Camber : 5
Camber loc : 5 0 . 0
Thickness : 1 1 . 0
C o l l e c t i v e : 3
P r e d i c t e d R e s u l t s : 77.98917

P r e d i c t i o n Number : 2
Nb : 2
RPM: 4500
Radius : 6 . 5
Target Thrust : 2 . 0
Camber : 5
Camber loc : 5 0 . 0
Thickness : 1 2 . 5
C o l l e c t i v e : 5
P r e d i c t e d R e s u l t s : 79.76465

P r e d i c t i o n Number : 3
Nb : 4
RPM: 3750
Radius : 6 . 0
Target Thrust : 3 . 0
Camber : 7 . 5
Camber loc : 4 5 . 0
Thickness : 1 5 . 0
C o l l e c t i v e : 5
P r e d i c t e d R e s u l t s : 80.289406

Example 14: Illustration of the output file generated by ANNMD using strOutputFormat= ‘table’.
This f i l e c o n t a i n s the ANN p r e d i c t e d r e s u l t s .
2 5000 7 . 5 2 . 0 5 . 0 5 0 . 0 1 1 . 0 3 77.98917
2 4500 6 . 5 2 . 0 5 . 0 5 0 . 0 1 2 . 5 5 79.76465
4 3750 6 . 0 3 . 0 7 . 5 4 5 . 0 1 5 . 0 5 80.289406

If blnAccuracyScore hold a boolean value of True, this output file generated by ANNMD will
also include calculated values of the MAPE, the R2

d score, and the highest residual error. The
highest residual error can be used to determine regions of the evaluation feature space where an
ANN prediction model performs poorly. This blnAccuracyScore can only be used if the evaluation
data file specified by strEvalFile contains a column of output data. Generally, a user may wish
to perform predictions over new data where output data are not known a priori, however, this
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included accuracy metric functionality can be very beneficial in the model development process.
For example, a user may use this ANNMD functionality to evaluate a prediction model over the
test data, determine regions of the input feature space where the model performs poorly, then add
additional input feature points in these regions to retrain a prediction model using ANNPM.

4.3 Demonstration

Due to the simplicity of ANNMD, detailed demonstrations of software capability have already been
provided in the previous section and will not be discussed in this section. To run ANNMD, the
user need only run the ANNMD.py script located in the ‘Source’ directory. The script should
be run in the directory containing the user-specified namelist, examples of which can be found
in the ‘Test/Annmd’ directory. A command line argument correspondent to the namelist file
name is also necessary to run ANNMD. For example, if the user were to execute ANNMD from
the ‘Test/Annmd/full data’ directory, the command line execution would take the following form:
‘python ../../../Source/ANNMD.py ANNMD.nml’.

Five examples are provided with AANNT that correspond to the same cases discussed previously in
Section 3.3, and use ANN prediction models generated using ANNPM for each of the five cases. In
general, these namelist files can be copied and modified by the user to accommodate the execution
of any ANN prediction model generated by ANNPM.
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5 Artificial Neural Network Sensitivity Analyses (ANNSA)

5.1 Process Summary

Since computer-based experiments are deterministic in nature, there is no statistical basis for quan-
tifying the importance of input features on the output. The inherent error associated with physical
experimentation is often used for significance testing (i.e., feature ranking) but in its absence (i.e.,
deterministic experiments), approaches for sensitivity analyses that are independent of the model
form must be utilized. All sensitivity analyses discussed herein are model independent, mean-
ing that they can be performed over any arbitrary prediction model since they leverage different
sampling techniques. This is in contrast to model-dependent methods commonly associated with
physical experiments, which train a number of prediction models without certain input features
to determine the influence of the withheld input feature(s). Because of this model independence,
computational cost associated with training additional prediction models is drastically reduced.

The third and final tool in the AANNT, called ANNSA, is a post-processing tool for conducting
sensitivity analyses over a trained ANN prediction model created by ANNPM. This tool is struc-
tured to operate using a user-specified namelist, which follows the same structure as the namelists
for both ANNPM and ANNMD with a user specification of input feature descriptions. In addition
to the number, names, and minimum/maximum values of any continuous input features or outputs
used in the modeling procedure performed by ANNPM, the precision of each continuous input
feature must also be specified, due to each type of sensitivity analysis requiring the generation of
new input feature spaces. This specified precision should match the precision of the training data
used by ANNPM. The sensitivity analyses in ANNSA allow for categorical input features, however,
they must be numeric (e.g., Nb = 3,4,5). The name and location of an ANN prediction model
created by ANNPM are specified in the user namelist, as well as the type of sensitivity analyses
wished to be performed. After performing the user-specified sensitivity analyses, ANNSA exports
the results to a text file, which can then be interpreted by the user. The following sensitivity anal-
yses are supported by ANNSA: Sobol’ Sensitivity Analysis [27], Fourier Amplitude Sensitivity Test
(FAST) [28,29], Random Balance Designs Fourier Amplitude Sensitivity Test (RBD-FAST) [30,31],
and the Profile-Method [32].

All sensitivity analysis types, except for the Profile-Method, leverage different routines available
within the open-source Python library, SALib [33]. These sensitivity analyses utilize different
sampling techniques to calculate global-based sensitivity metrics. The sampling techniques are
specific to the type of sensitivity analysis being conducted and, in general, use the prediction model
output correspondent to each point in the sampling procedure to quantify the partial variances, Vk,
Vkl, etc., and the total variance, Vtot, of a prediction model [34]. The first- and second-order global
sensitivity indices , Sk, Skl, for an input feature, k, for example, can then be calculated using:

Sk =
Vk

Vtot
, Skl =

Vkl

Vtot
, (k = 1,2, ...,n; l = 1,2, ...,n), (15)

where:

1 =
s∑
k

Sk +
s∑
k

s∑
l

Skl +
s∑
k

s∑
l

s∑
u

Sklu + ...+H.O.T . (16)
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These global sensitivity indices can then be compared to infer which input feature is most significant
to the prediction model output (i.e., input feature with the largest sensitivity index).

The Profile-Method, proposed by Lek et al. [32], uses a qualitative sensitivity analysis approach,
in contrast to the qualitative approach used by the previously mentioned sensitivity analyses. This
method first divides all input features into an equal number of intervals, Q, which, when using
a categorical input feature, will be equivalent to the number of discrete values of the categorical
input feature. While maintaining the input feature in question at its lowest interval value, the
other input features are successively incremented through their intervals and a mean output, Rq,k,
is calculated over the prediction model outputs for each successive incrementation:

R1,k =
1
Q

Q∑
q=1

f(x1,k,xq,k+1,xq,k+2, ...,xq,s), (k = 1,2, ...,n). (17)

The input feature in question is then incremented to its successive interval value, q = 2, and the
process is repeated to produce R2,k. This procedure is carried out over the number of intervals,
Q, and is repeated for all input features with the final mean response values being plotted to
qualitatively determine which input feature has the largest effect on the response. An illustration
of the Profile-Method with two input features is shown in Fig. 10 where it can be inferred that
the input feature x2 has a larger significance than x1. Since this sensitivity analysis is qualitative,
ANNSA uses the maximum and minimum values of Rq,k to calculate a quantitative metric, ∆R,
for sensitivity comparison between input features:

∆Rk = Rq,kmax
−Rq,kmin

. (18)

Figure 10: Illustration of the Profile-Method sensitivity analysis. Adapted from Shojaeefard et
al. [3].
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5.2 Setup and Execution

ANNSA is a standalone Python code, requiring only a user-generated namelist file, evaluation data,
prediction models developed by ANNPM, and the installation of the following Python packages:

• sys

• os

• f90nml

• numpy

• pandas

• tensorflow

• SALib

The user is referred to the Anaconda user-guide page: https://docs.anaconda.com/anaconda/
user-guide/tasks/install-packages/ for instruction on package installation. This section of
the manual explains the various user-specified inputs to the namelist as well as how to properly
execute ANNSA.

5.2.1 User-specified Namelist

The general form of the user-specified ANNSA namelist consists of three sections correspondent to
the input data, input feature description, and output data, respectively. The first section of the
ANNSA namelist is the &InputData section, which is shown in Ex. 15.

Example 15: Illustration of the &InputData section of the user-specified ANNSA namelist.
&InputData
! Name o f the model d i r e c t o r y . Defau l t va lue i s ’ . / ’ or the cur rent working d i r e c t o r y .
strModelLocat ion = ’ . / ’

! Name o f the model f i l e .
strModelName = ’ Induced Power . h5 ’
/

The &InputData section only contains two inputs, strModelLocation and strModelName, which
correspond to the directory location and name of an ANN prediction model generated by ANNPM,
respectively.

Similar to all tools within AANNT, the user-specified namelist also contains a section to describe the
input features, &InputFeatureDescription. An example of this section can be seen in Ex. 16. Since
ANNSA uses a prediction model generated by ANNPM for sensitivity analysis routines, the data
over which sensitivities are calculated must first be manipulated to a form recognizable to the model.
This &InputFeatureDescription section follows the exact form as the &InputFeatureDescription
from the ANNMD namelist and the various inputs to this section will not be discussed here for
brevity. The only difference for the &InputFeatureDescription section in the ANNSA namelist
is that it contains the input, fltContinuousInputPrecision, which dictates the number of decimals
each continuous input feature has. ANNSA internally generates input feature spaces relevant to
each type of sensitivity analysis and this precision specification ensures that these input feature
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spaces have the same precision as what the ANN prediction models are capable of. Values of
fltContinuousInputPrecision should match the precision of the input training data used by ANNPM
for ANN model development.

Example 16: Illustration of the &InputFeatureDescription section of the user-specified ANNSA
namelist.
&InputFeatureDescr ipt ion
! I n t e g e r va lue f o r the number o f cont inuous f e a t u r e s .
nContinuousInputs = 7

! Continuous input names .
strContinuousInputNames = ’RPM’ , ’ Radius ’ , ’ Target Thrust ’ , ’Camber ’ ,
’ Camber loc ’ , ’ Thickness ’ , ’ C o l l e c t i v e ’

! Boolean to normal ize cont inuous inputs . The d e f a u l t va lue o f True i s recommended .
blnNormal izeContinuousInputs = True

! Lower va lue s o f each cont inuous input . Only needed
! i f b lnNormal izeContinuousInputs = True .
f ltContinuousInputRangeLow = 6 , 3000 , −20, −.33 , 0 . 5 , −5, 0 , 6

! Upper va lue s o f each cont inuous input . Only needed
! i f b lnNormal izeContinuousInputs = True .
f l tContinuousInputRangeHigh = 12 , 6000 , 0 , 1 , 1 . 5 , 10 , 10 , 15

! Number o f dec imals f o r each cont inuous input .
f l t C o n t i n u o u s I n p u t P r e c i s i o n = 2 , 0 , 1 , 1 , 1 , 1 , 2 , 2

! I n t e g e r va lue f o r the number o f c a t e g o r i c a l inputs . The d e f a u l t va lue i s 0 .
nCategor i ca l Input s = 1

! Name o f the c a t e g o r i c a l input . Only needed i f nCategor i ca l Input s != 0 .
st rCategor ica l InputNames = ’Nb ’

! Category va lue s o f the c a t e g o r i c a l input . Only needed i f nCategor i ca l Input s != 0 .
strCategoryValues Nb = ’ 3 ’ , ’ 4 ’

! Number o f model outputs . The d e f a u l t va lue i s 1 .
nModelOutputs = 1

! Name o f the output f u n c t i o n s . The d e f a u l t va lue i s ’ output ’ .
strOutputFunctionNames = ’ Induced Power ’

! Boolean to normal ize the outputs . The d e f a u l t va lue o f Fa l se i s recommended .
blnNormalizeOutput = False

! Lower va lue s o f each output . Only needed i f blnNormalizeOutput = True .
fltOutputRangeLow = 0 , 0

! Upper va lue s o f each output . Only needed i f blnNormalizeOutput = True .
f ltOutputRangeHigh = 200 , 200
/

The last section in the ANNSA namelist is the &OutputData section, shown in Ex. 17. This section
deals with the types of sensitivity analyses to be conducted, which are specified using strSensitivity-
AnalysisType. Options include ‘Sobol’, ‘FAST’, ‘RBD-FAST’, ‘Profile-Method’, and ‘all’. Multiple
types of sensitivity analyses can also be specified at one time (e.g., strSensitivityAnalysisType =
‘Sobol’, ‘FAST’). The various supported sensitivity analysis routines have been discussed in Section
5.1, and the user is referred to the references listed in Section 5.1 for details pertaining to each type
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of sensitivity analysis supported by ANNSA.

Example 17: Illustration of the &OutputData section of the user-specified ANNSA namelist.
&OutputData
! S e n s i t i v i t y a n a l y s i s type . The d e f a u l t va lue i s ’ Sobol ’ .
! Options are ’ Sobol ’ , ’FAST’ , ’RBD−FAST’ , and ’ P r o f i l e −Method ’ .
s t r S e n s i t i v i t y A n a l y s i s T y p e = ’ a l l ’

! Test f l a g to seed the sample spaces f o r r e g r e s s i o n t e s t i n g . Should be s e t to
! the d e f a u l t va lue o f Fa l se f o r a p p l i c a t i o n .
blnTest = Fal se

! Output summary f i l e name . The d e f a u l t va lue i s ’ S e n s i t i v i t y R e s u l t s . out ’ .
strOutputSummaryFileName = ’ S e n s i t i v i t y R e s u l t s . out ’
/

In general, all sensitivity analysis types produce very similar results and the ‘Sobol’, ‘FAST’, and
‘Profile-Method‘ sensitivity analysis types are recommended for regression problems, especially
those containing a numeric categorical input feature. Since input feature space generation typically
involves an iteration procedure, the input, blnTest, can be used to set a seed value to ensure the
generated input feature spaces are identical with each ANNSA execution. This input is used for
development testing, and should maintain a value of False for user execution.

Lastly, the input, strOutputSummaryFile, can be used to specify the name of the output file pro-
duced by ANNSA. This output file contains the first-order and total sensitivities of each input
feature for the ‘Sobol’ and ‘FAST’ sensitivity analysis types, if specified by the user. Each sen-
sitivity result is a fraction of unity, and larger magnitudes mean that a particular input feature
has a higher influence on the ANN prediction model. The total sensitivity results included in this
output for the ‘Sobol’ and ‘FAST’ sensitivity analysis types include first-, second-, and higher-
order sensitivity results, and the difference between the total sensitivity result and the first-order
sensitivity analysis result for a particular input feature is equivalent to all second- and subsequent-
order sensitivities. Only first-order sensitivity analysis results are supported for the ‘RBD-FAST’
method. The results from the ‘Profile-Method’ can be interpreted as first-order sensitivities but
are the difference between maximum and minimum response of each input feature at each interval,
as discussed in Section 5.1.

5.3 Demonstration

To run ANNSA, the user need only run the ANNSA.py script located in the ‘Source’ directory. The
script should be run in the directory containing the user-specified namelist, examples of which can
be found in the ‘Test/Annsa’ directory. A command line argument correspondent to the namelist
file name is also necessary to run ANNSA. For example, if the user were to execute ANNSA from
the ‘Test/Annsa/full data’ directory, the command line execution would take the following form:
‘python ../../../Source/ANNSA.py ANNSA.nml’.

Since ANNSA does not support more than one numerical categorical input feature, only four
examples, correspondent to four of the cases from Section 3.3 are provided: the full data case, the
full data case with scaled outputs, the full data case with two outputs, and the reduced input case
with no categorical input feature. Since the output result file is similar for the two cases, only
results and interpretation of results from the full data case will be explained. The output file from
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executing ANNSA in the ‘Test/Annsa/full data’ directory is shown in Ex. 18.

Example 18: Illustration of the output file generated by ANNSA and specified by the namelist
input, strOutputSummaryFileName.
This f i l e c o n t a i n s the ANN s e n s i t i v i t y r e s u l t s .

Sobol Index R e s u l t s for Induced Power :
S1 0.0037266910482248905 0.02819834467838821 0.033822782159579186 0.13706374894524992
0.00333429492378461 0.003036786536123205 0.0002681453512165482 0.6300110979390627
ST 0.02420618478449911 0.04294698205089024 0.055245870852184464 0.24546444105761622
0.006144216325305319 0.005986536321355081 0.0017470788671428794 0.7693515683372419

FAST R e s u l t s for Induced Power :
S1 0.01016796714756741 0.018114807848980164 0.033611045558403004 0.16533352438627755
0.0030491680250180992 0.003423958472980088 0.00016814397383385553 0.6634482587460128
ST 0.024784675886210583 0.03674455007389321 0.06073968574276856 0.2534424407726249
0.007762611032796629 0.008568278048312727 0.004530560974836506 0.7840943971634666

RBD−FAST R e s u l t s for Induced Power :
S1 0.018829426138984914 0.021174538196349627 0.022634163955036472 0.16234013377403728
0.004330999236934037 0.006923689145822913 −0.0043653127338205075 0.6351246931114976

P r o f i l e −Method R e s u l t s for Induced Power :
dV 8.688232421875 9.00040054321289 7.340702056884766 32.93979263305664
9.16146469116211 6.071346282958984 3.7981796264648438 57.89155578613281

Each of the eight columns of data for each of the sensitivity analysis types correspond to each of the
eight input features outlined in Table 1, starting with the categorical input feature, Nb, followed by
the categorical input features in the order specified by strContinuousInputNames and shown in Ex.
16. As shown in Ex. 18, the last column of data for each of the sensitivity analysis types holds the
largest sensitivity value, indicating that the last continuous input feature, θ0, has the largest effect
on the PI prediction model, followed by the fourth column, correspondent to the third continuous
input feature, Tdesign. It should be noted that the ANN prediction models used for this example
sensitivity analysis were trained using only five epochs, meaning that these example results are not
physically accurate and are provided for demonstration purposes only.
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Acronyms and Abbreviations

AANNT . . . . . . . . . . . . . . . . . . . . . . . The ANOPP2 Artificial Neural Network Tool

AAVP . . . . . . . . . . . . . . . . . . . . . . . . Advanced Air Vehicles Program

ADoET . . . . . . . . . . . . . . . . . . . . . . . The ANOPP2 Design of Experiments Tool

ANN . . . . . . . . . . . . . . . . . . . . . . . . . Artificial Neural Network

ANNMD . . . . . . . . . . . . . . . . . . . . . . Artificial Neural Network Model Deployment

ANNPM . . . . . . . . . . . . . . . . . . . . . . Artificial Neural Network Prediction Modeling

ANNSA . . . . . . . . . . . . . . . . . . . . . . . Artificial Neural Network Sensitivity Analyses

ANOPP . . . . . . . . . . . . . . . . . . . . . . . Aircraft NOise Prediction Program

ANOPP2 . . . . . . . . . . . . . . . . . . . . . . Aircraft NOise Prediction Program 2

ARMD . . . . . . . . . . . . . . . . . . . . . . . Aeronautics Research Mission Directorate

DoE . . . . . . . . . . . . . . . . . . . . . . . . . Design of Experiments

ELU . . . . . . . . . . . . . . . . . . . . . . . . . Exponential Linear Unit

GELU . . . . . . . . . . . . . . . . . . . . . . . . Gaussian Error Linear Unit

HDF . . . . . . . . . . . . . . . . . . . . . . . . . Hierarchical Data Format

MAE . . . . . . . . . . . . . . . . . . . . . . . . Mean Absolute Error

MAPE . . . . . . . . . . . . . . . . . . . . . . . Mean Absolute Percentage Error

MASE . . . . . . . . . . . . . . . . . . . . . . . . Mean Absolute Scaled Error

ML . . . . . . . . . . . . . . . . . . . . . . . . . Machine Learning

MLP . . . . . . . . . . . . . . . . . . . . . . . . . Multilayer Perceptron

MSE . . . . . . . . . . . . . . . . . . . . . . . . . Mean Squared Error

MSLE . . . . . . . . . . . . . . . . . . . . . . . . Mean Squared Logarithmic Error

ReLU . . . . . . . . . . . . . . . . . . . . . . . . Rectified Linear Unit

RMSE . . . . . . . . . . . . . . . . . . . . . . . . Root Mean Squared Error

RVLT . . . . . . . . . . . . . . . . . . . . . . . . Revolutionary Vertical Lift Technology

SLP . . . . . . . . . . . . . . . . . . . . . . . . . Single-layer Perceptron
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Glossary

Aeronautics Research Mission Directorate (ARMD)

NASA aeronautics has made decades of contributions to aviation. Every U.S. commercial
aircraft and U.S. air traffic control tower has NASA-developed technology on board that
helps improve efficiency and maintain safety. Research conducted by ARMD directly benefits
today’s air transportation system, the aviation industry, and the passengers and businesses
who rely on aviation every day. ARMD scientists, engineers, programmers, test pilots, fa-
cilities managers and strategic planners are focused on aviation’s future. They design, de-
velop and test advanced technologies that will make aviation much more environmentally
friendly, maintain safety in more crowded skies, and ultimately transform the way we fly.
(https://www.nasa.gov/aeroresearch/about-armd).

Aircraft NOise Prediction Program (ANOPP)

A NASA computer program to predict aircraft component and system noise [35]. ANOPP
has been implemented in three ANOPP2 modules.

Aircraft NOise Prediction Program 2 (ANOPP2)

Second generation ANOPP. ANOPP2 employs a mixed-fidelity framework to incorporate
methods of differing fidelity allowing semiempirically-based, low-resolution methods, such as
those found in ANOPP, to be combined with higher resolution, CFD-based methods required
for better understanding of the noise-generating mechanisms [36].

Artificial Neural Network (ANN)

Machine Learning (ML) prediction model architecture, which aims to replicate the neurons
in the human brain to develop input-output functional relationships.

Artificial Neural Network Model Deployment (ANNMD)

Functionality of AANNT that deals with ANN model deployment and accuracy metric cal-
culation.

Artificial Neural Network Prediction Modeling (ANNPM)

Functionality of AANNT that deals with ANN prediction modeling.

Artificial Neural Network Sensitivity Analyses (ANNSA)

Functionality of AANNT that deals with ANN sensitivity analyses.

Design of Experiments (DoE)

A process used for planning an experiment so that appropriate data can be collected by
statistical methods, resulting in valid and objective conclusions [37].

Exponential Linear Unit (ELU)

A nonzero gradient variant of the ReLU activation function used in regression problems with
functional form given in Eq. 6.
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Gaussian Error Linear Unit (GELU)

A nonzero gradient variant of the ReLU activation function used in regression problems with
functional form given by:

GELU(x) =
x

2

[
1+ erf

(
x√
2

)]
.

Machine Learning (ML)

General class of prediction modeling techniques where functional input-output relationships
are ‘learned’ over training data.

Mean Absolute Error (MAE)

A cost function commonly used in regression problems that can be described as the mean of
the absolute values of the difference between model predictions and true output data. The
functional form of this cost function is expressed in Eq. 7.

Mean Absolute Percentage Error (MAPE)

A metric used for calculating the error between model predictions and true output data. The
functional form of this cost function is expressed by:

MAPE =
1
n

n∑
j=1

∣∣∣∣∣yj − ŷj

yj

∣∣∣∣∣ .
Mean Absolute Scaled Error (MASE)

A cost function commonly used in regression problems that can be described as the mean of
the absolute values of the difference between model predictions and true output data divided
by the mean value of the true output data. The functional form of this cost function is
expressed by:

MASE =
1
n

n∑
j=1

∣∣∣∣∣yj − ŷj

ȳj

∣∣∣∣∣ .
Mean Squared Error (MSE)

A cost function commonly used in regression problems that can be described as the mean of
the squared values of the difference between model predictions and true output data. The
functional form of this cost function is expressed in Eq. 8.

Mean Squared Logarithmic Error (MSLE)

A metric used for calculating the error between model predictions and true output data. The
functional form of this cost function is expressed by:

MSLE =
1
n

n∑
j=1

log
(

yj + 1
ŷj + 1

)2

.

Multilayer Perceptron (MLP)

ANN architecture that contains two or more hidden layers of neurons.
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Rectified Linear Unit (ReLU)

A type of ANN activation function commonly used in regression problems with the following
form:

ReLU(x) =

{
0 x < 0
x x ≥ 0. (19)

Revolutionary Vertical Lift Technology (RVLT) Project

NASA’s vision for vertical lift vehicles is to capitalize and improve unique vertical capabilities
to greatly benefit the Nation’s growing civil flight requirements. (taken from https://www.
nasa.gov/aeroresearch/programs/aavp/rvlt).

Root Mean Squared Error (RMSE)

A cost function commonly used in regression problems that can be described as the square
root of the mean of the squared values of the difference between model predictions and true
output data. The functional form of this cost function is expressed by:

RMSE =

√√√√ 1
n

n∑
j=1

(yj − ŷj)
2.

Single-layer Perceptron (SLP)

ANN architecture that contains one hidden layer of neurons.

The ANOPP2 Artificial Neural Network Tool (AANNT)

Suite of user-friendly standalone ANN tools within the ANOPP2 software that deals with
prediction modeling, model deployment, and sensitivity analyses.

The ANOPP2 Design of Experiments Tool (ADoET)

DoE routine functionality within ANOPP2 that pertains to the development of modern,
space-filling DoE regions of experimentation.
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